The absB gene encodes a double strand-specific endoribonuclease that cleaves the read-through transcript of the rpsO-pnp operon in Streptomyces coelicolor.
نویسندگان
چکیده
The absB locus of Streptomyces coelicolor encodes a homolog of bacterial RNase III. We cloned and overexpressed the absB gene product and purified a decahistidine-tagged version of the protein. We show here that AbsB is active against double-stranded RNA transcripts derived from synthetic DNAs but is inactive with single-stranded homopolymers. We thus designate the absB product RNase IIIS. Using T7 RNA polymerase and a cloned template containing the rpsO-pnp intergenic region, we synthesized an RNA substrate representing a portion of the read-through transcript normally produced in S. coelicolor. This transcript contains the sequences that form the putative rpsO terminator and those that form an intergenic stem-loop structure thought to be the site for RNase IIIS processing of the read-through transcript. We show that RNase IIIS does cleave that model transcript, with primary and secondary cleavage sites in an internal loop in the stem-loop structure. We have identified the primary and secondary cleavage sites by primer extension and demonstrate the further processing of the initial cleavage products. Thus, as is the case in Escherichia coli, the read-through transcript from rpsO-pnp is cleaved by RNase IIIS in S. coelicolor. However, the cleavage sites are different in the two systems. The positions of the cleavage sites in the stem-loop of the S. coelicolor transcript are more akin to those identified in the processing of bacteriophage T7 mRNAs. A kinetic assay for RNase IIIS was developed, and kinetic parameters for the reaction utilizing the model transcript from rpsO-pnp were determined.
منابع مشابه
Autoregulation of AbsB (RNase III) expression in Streptomyces coelicolor by endoribonucleolytic cleavage of absB operon transcripts.
The Streptomyces coelicolor absB gene encodes an RNase III family endoribonuclease and is normally essential for antibiotic biosynthesis. Here we report that AbsB controls its own expression by sequentially and site specifically cleaving stem-loop segments of its polycistronic transcript. Our results demonstrate a ribonucleolytic regulatory role for AbsB in vivo.
متن کاملRNase III-dependent expression of the rpsO-pnp operon of Streptomyces coelicolor.
We have examined the expression of the rpsO-pnp operon in an RNase III (rnc) mutant of Streptomyces coelicolor. Western blotting demonstrated that polynucleotide phosphorylase (PNPase) levels increased in the rnc mutant, JSE1880, compared with the parental strain, M145, and this observation was confirmed by polymerization assays. It was observed that rpsO-pnp mRNA levels increased in the rnc mu...
متن کاملOrganization and expression of the polynucleotide phosphorylase gene (pnp) of Streptomyces: Processing of pnp transcripts in Streptomyces antibioticus.
We have examined the expression of pnp encoding the 3'-5'-exoribonuclease, polynucleotide phosphorylase, in Streptomyces antibioticus. We show that the rpsO-pnp operon is transcribed from at least two promoters, the first producing a readthrough transcript that includes both pnp and the gene for ribosomal protein S15 (rpsO) and a second, Ppnp, located in the rpsO-pnp intergenic region. Unlike t...
متن کاملTranscriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci.
The four antibiotics produced by Streptomyces coelicolor are all affected by mutations in the absA and absB loci. The absA locus encodes a putative two-component signal transduction system, and the absB locus encodes a homolog of Escherichia coli RNase III. We assessed whether these loci control synthesis of the antibiotics actinorhodin and undecylprodigiosin by regulating transcript abundance ...
متن کاملA Streptomyces coelicolor antibiotic regulatory gene, absB, encodes an RNase III homolog.
Streptomyces coelicolor produces four genetically and structurally distinct antibiotics in a growth-phase-dependent manner. S. coelicolor mutants globally deficient in antibiotic production (Abs(-) phenotype) have previously been isolated, and some of these were found to define the absB locus. In this study, we isolated absB-complementing DNA and show that it encodes the S. coelicolor homolog o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 39 شماره
صفحات -
تاریخ انتشار 2005